

1

Lightweight DTLS Implementation in CoAP-based IoT

Vishwas Lakkundi and Keval Singh

Altiux Innovations Pvt. Ltd., Bangalore, India

{vishwas.lakkundi, keval.singh}@altiux.com

Abstract—Security is emerging as a key area of focus in the

Internet of Things. Lightweight implementations of the required

security features are the need of the hour considering the resource

constrained nature of the underlying nodes and networks. At the

same time, it is essential to ensure that such implementations are

robust, reliable and efficient. This paper addresses this need by

providing a framework for implementing a lightweight version of

the Datagram Transport Layer Security protocol in the Internet

of Things. In addition, a real-world application scenario

incorporating this lightweight security approach is included for

illustration in this position paper. It also sheds light on the ongoing

standardization activities in the security domain and relevant

future directions to help practitioners keep abreast of all the

related developments.

Keywords—Internet of Things; M2M; information security;

DTLS; CoAP.

I. INTRODUCTION

The nodes in Internet of Things (IoT) often have constraints
regarding their resources such as computational power, memory
size and power management. Network communication,
especially wireless, also imposes additional restrictions such as
low bitrates, variable delays and high packet losses. Due to their
pervasive nature, sensitive data can be collected and transmitted
from different sources for both public and private use [1].
Consequently, security of transmitted data as well as source
authentication are crucial. Security can be provided at different
layers of the underlying protocol stack. Typically, application
layer protocols often delegate security mechanisms to the
transport layer, which helps in achieving end-to-end security.
And the overhead due to this security mechanism is very
relevant to the overall system performance. One such protocol is
Datagram Transport Layer Security (DTLS) [2], which
additionally has inbuilt binding within Constrained Application
Protocol (CoAP) [3], which is a specialized web transfer
protocol intended to be used by constrained devices in IoT.
Though DTLS was not designed with lossy networks and
constrained devices in mind, it has emerged as a key candidate
to provide security in IoT. However, it cannot be employed as is
since it is considered to be too heavy for resource constrained
environments. Instead, lightweight implementations of DTLS
are more suitable for use in IoT.

A typical communication scenario between an unconstrained
network and a constrained network is shown in Fig. 1. An
unconstrained network is typically represented by the Internet,
whereas the IoT consisting of a low power wireless personal area
network (LoWPAN) represents the constrained domain.

Fig. 1. Networking and communication scenario in IoT.

An IoT gateway placed on the edge between the
unconstrained network (UCN) and the constrained network
(CN) adapts the communication between these two domains. Its
role usually involves the adaptation between different protocol-
layer implementations. Also called a border router, it carries out
protocol translations vis-à-vis end-to-end IoT security as
illustrated in Fig. 2.

Since the gateway is generally an unconstrained device, it
can also be used for scaling down the functionalities from the
UCN to the CN domain and also for managing security settings
in peripheral constrained networks [4]. To maintain the end-to-
end approach, the gateway needs to remain invisible to the
communicating endpoints. As shown in Fig. 1, a node on the
UCN can be either HTTP enabled or only CoAP enabled.

Fig. 2. Architecture for end-to-end security in IoT.

This paper is organized as follows: the next section
introduces DTLS and its security features. Section III provides
an overview of CoAP and state-of-the-art on lightweight DTLS
implementations. Our guidelines on lightweight DTLS
implementation techniques for CoAP-based IoT are elaborated
in Section IV. It also includes a real-world application scenario
that illustrates the integration of different variants of DTLS with
CoAP. Section V provides an overview of ongoing
standardization activities in the DTLS domain, while future
directions are outlined in Section VI.

6LoWPAN Internet

HTTP

TCP

TLS

 HTTP -
CoAP

 TCP -
UDP

 TLS -

DTLS

CoAP

UDP

DTLS

HTTP

Client/Server
Border

Router
CoAP

Server/Client

Vishwas.lakkundi
Typewriter
©IEEE ADCOM2014

2

II. DTLS OVERVIEW

A. Transport Layer Security

Transport Layer Security (TLS) offers communication
security at the transport layer to protect HTTP applications
running on top of TCP. TLS version 1.2 is defined in RFC5246
[5]. This version of TLS offers more flexibility in the sense that
ciphersuites that were hardcoded in the Pseudo-Random
Function (PRF) in earlier versions are replaced with cipher-
suite-specified PRFs. All TLS versions separate authentication
and key exchange, and bulk data protection. The former is more
expensive in terms of performance and message size. Particulars
of authentication and key exchange using the TLS handshake
vary with the ciphersuites selected. Once the TLS handshake is
established, the necessary keying parameters are setup for use
with the TLS Record Layer (RL) that is responsible for bulk data
protection. Ciphersuites used for the TLS RL include AES-
128/AES-256 with SHA-1 and RC4 with SHA-1/MD5. TLS
may also be used without RL as in Secure Real-time Transport
Protocol (SRTP) using DTLS (DTLS-SRTP) [6].

TLS was designed for reliable transport protocols, thus it
expects no loss or reordering of messages from the transport
layer. If a message is lost or appears out of order, it assumes an
attack and thus drops the connection. Hence, it cannot be used
with unreliable transport protocols that are invariably lossy in
nature. This led to the emergence of the Datagram Transport
Layer Security (DTLS).

B. Datagram Transport Layer Security

DTLS is derived from, and inherits some characteristics of
TLS. It allows re-use of TLS security functionalities on top of
User Datagram Protocol (UDP). With the emergence of CoAP
as a specialized web transfer protocol for constrained devices,
DTLS is the preferred security protocol in IoT.

Like TLS, DTLS also has a base protocol called Record
Layer, and four sub-protocols on top, namely Handshake,
ChangeCipherSpec, Alert Protocol and the application data
protocol as explained in [2]. The required security features for a
specific smart object application in IoT depend on various
factors such as the underlying communication architecture and
the threats to be mitigated [7].

III. STATE-OF-THE-ART

A. Constrained Application Protocol

CoAP is a specialized web transfer protocol intended to be
used by constrained devices in IoT/M2M applications. It
provides a client/server interaction model between application
endpoints and includes the same key functionalities of HTTP.
For this reason, CoAP can be easily interfaced with HTTP,
resulting in simplified web integration while also ensuring M2M
critical requirements such as low overhead, multicast support,
built-in discovery and simplicity.

B. Lightweight DTLS

IoT nodes often have constraints regarding their resources
such as computational power, memory size and power
management. Network communication, especially wireless,
also imposes additional restrictions such as low bitrates,
variable delays and high packet losses. In addition, since frames

at the link layer are much smaller than the IPv6 MTU of 1280
bytes, additional adaptation mechanisms such as 6LoWPAN [8]
for IEEE 802.15.4 networks is required, which further limits the
network capacity. However, application layer protocols often
delegate security mechanisms to the transport layer, which
helps in achieving end-to-end security. And the overhead due
to this security mechanism is very relevant to the overall system
performance. One such protocol is DTLS, which additionally
has inbuilt binding within CoAP. Though DTLS was not
designed with lossy networks and constrained devices in mind,
it has emerged as a key candidate to provide security in IoT.
However, it cannot be employed as it is since it is considered to
be too heavy for use in constrained environments and networks
such as IoT. Thus emerged several lightweight implementations
of DTLS for use in IoT, some of which are explained below to
give us the required insight into the state-of-the-art techniques
in this emerging domain.

C. Lightweight DTLS Implementation

Implementation of DTLS could be based on employing any
of the following techniques:

- Pre-shared Key (PSK)

- Raw Public Key

- Certificates

PSK based implementation examples are elaborated in the
following subsection. However, DTLS implementations based
on certificates and raw public keys are currently out of scope of
this paper as they are considered to be very heavy for IoT.

1) TinyDTLS

TinyDTLS is a software library that provides a very simple

datagram server with DTLS support. It is designed to support

session multiplexing in single-threaded applications and thus

specifically targets embedded systems. It is distributed under

the MIT License [9]. Its salient features include:

- Basic support for DTLS with PSK only

- No support for public key cryptography

- Supports HMAC-SHA256

- Supports Rijndael (AES)

- Supports clock handling, NetQ, PN number generation

2) Lightweight TinyDTLS

This lightweight DTLS implementation is based on the

open-source library TinyDTLS, which in turn is ported to

Contiki [10]. It has the following salient features:

- Supports AES-128 and SHA-256

- No support for CCM

- No DTLS message fragmentation

- Limited alert protocol

- Not compliant with DTLS IETF RFC 6347

- Compliant with Class 1 device specifications (<10 KB

RAM, <100 KB Flash)

3) CoAP over DTLS - TinyOS Implementation

It includes the integration of three libraries that implement

lightweight versions of DTLS and CoAP protocols as well as

3

the IPv6/6LoWPAN stack. It is implemented using the nesC

programming language in TinyOS [11]. Its salient features are:

- Provides integration of DTLS with CoAP and 6LowPAN

- Defines the necessary interfaces

- Includes DTLS with PSK only

- No support for public key cryptography support

- Supports HMAC-SHA2

- Supports Rijndael (AES)

- Supports CCM

- Supports clock handling, NetQ, PN number generation

- Not Compliant with Class 1 device specifications

IV. LIGHTWEIGHT DTLS IMPLEMENTATION TECHNIQUES

The TinyDTLS implementation library consists of the
following core modules. Further details on each of these
modules can be found in [9].

- DTLS

 - State machine used to establish a DTLS session

 - Handshake protocol definition

 - Structure of different messages used by the protocol

- Cryptography

 - Encryption operations

 - Decryption operations

- Keyed-Hash Message Authentication Code (HMAC)

 - Algorithm used for message authentication

- Counter with Cipher Block Chaining Message

Authentication Code (Counter with CBC-MAC or CCM)

 - Actual implementation of encryption function

 - Actual implementation of decryption function

- Rijndael Cipher

 - Implementation of AES

- Secure Hash Algorithm (SHA-2)

 - Implementation of a set of cryptographic hash functions

A. Protocol Library

The TinyDTLS protocol library consists of interconnection
of several components with the main DTLS module as shown
in Fig. 3. It contains all the logic required to handle secure
communications including data sessions, handshake protocol
definition and structures of different messages belonging to the
security protocol.

The Crypto module handles all the authentication and
encrypt/decrypt operations. As a lightweight DTLS
implementation, the crypto component supports only
DTLS_PSK_WITH_AES_128_CBC_SHA-256, which is
composed of the pre-shared key exchange algorithm and the
128 bit AES algorithm in CCM mode.

Message integrity and a second check for message
authentication is achieved by the HMAC component, which
calculates a MAC through the SHA-256 function in
combination with a secret cryptographic key generated from the
master secret realized during the handshake phase [12].

The Clock Handling module carries out default
implementation of the internal clock and the Random Number
Generation module generates random numbers, both of which
are employed in the computation of secret keys.

Fig. 3. TinyDTLS protocol library structure.

The Memory Allocation module allocates memory to peers
as well as help freeing memory allocated to them. The Network
Packet Queue (NetQ) utility functions implement an ordered
queue of data packets to send over the network and can also be
used to queue received packets from the network.

B. Interaction Architecture and Interfaces

The interaction between CoAP and DTLS modules is

illustrated in the architecture diagram in Fig. 4. It also depicts

the interaction between CoAP, UDP and 6LoWPAN (6LP). In

case, no security is desired by the corresponding application,

CoAP bypasses its interaction with DTLS and communicates

directly with UDP and 6LP instead.

The required interfaces between CoAP and DTLS in both

forward and reverse directions of data flow are shown in Fig. 5

and Fig. 6 respectively.

In the forward direction, a CoAP packet is sent to the DTLS

module for adding security functionality. This operation needs

two interfaces: one for reading normal data packets from CoAP

to DTLS and the other for sending encrypted data packets from

DTLS. Afterwards, the encrypted data packets are sent across

to UDP. These three steps are indicated numerically in Fig. 5.

Crypto

HMAC

NetQ

DTLS

Clock

Handling

Random

No.

Generation

Memory

Allocation

AES

SHA-2

CCM

4

Fig. 4. CoAP-DTLS interaction architecture.

In the reverse direction, secured data packets received from

UDP/6LP are sent across to DTLS for decryption. This

operation also needs two interfaces: one for reading secured

data packets from UDP and the other for sending decrypted data

packets from DTLS back to CoAP, which in turn transfers this

data to the corresponding application above it.

Fig. 5. Encrypting a CoAP packet using DTLS.

Fig. 6. Sending a DTLS decrypted packet to CoAP.

The various interfaces defined earlier that are employed

during the forward and reverse data flow directions are further

elaborated below. These interfaces are essentially defined by

the TinyDTLS implementation library available at [9]. The

minimum configuration required for any useful communication

to take place include the creation of the DTLS context, read and

write call backs and registration of the key management

function.

The pseudo-code for Read Callback interface that is

invoked once the DTLS session is established, and the

application data has been received, is given in Fig. 7.

int read_from_peer(dtls_context, session, data, length)

{

return dtls_write(context, session, data, length);

}

Fig. 7. TinyDTLS read callback interface.

In the pseudo-code for Write Callback interface given in

Fig. 8, the callback function send_to_peer() is called whenever

data needs to be sent over the network. Here, the sendto()

system call is used to transmit data within the given session.

 int send_to_peer(dtls_context, session, data, size)

 {

 int fn = dtls_get_app_data(dtls_context);

 return sendto(fn, data, size, session->addr, session->size);

 }

Fig. 8. TinyDTLS write (send) callback interface.

Here, dtls_context refers to a specific instance of the DTLS

library corresponding to a particular application, session refers

an active secure connection that has been established, data

refers to the message to be secured, and length refers to the

length of the above message.

C. Lightweight DTLS Application Scenario

Our IoT home automation application scenario to

demonstrate light control, temperature and humidity sensing on

a reference hardware board on the right through a web browser

on the left is shown in Fig. 9. It also involves a web layer in the

middle, which includes a web gateway service that performs

HTTP to CoAP translation. This application involves secure

CoAP, meaning CoAP packets are secured using DTLS. For

securing the CoAP link between the web and device layers, we

employ lightweight TinyDTLS implementation on the device

layer and the Scandium DTLS implementation on the web

layer.

This implementation is unique since different forms of

DTLS are successfully integrated to provide secure CoAP

functionality. For total end-to-end security between the browser

and the end device, TLS has to be employed between the

browser and web layers in addition to the DTLS security

mentioned above.

Normal Packet

CoAP DTLS

Encrypted Packet

1

2

3

Secure UDP Packet

Decrypted Packet

CoAP DTLS

2

1

3

CoAP

DTLS

UDP

6LP

5

Fig. 9. Application scenario involving CoAP over DTLS.

V. STANDARDIZATION ACTIVITIES

The recently formed IETF DTLS In Constrained
Environments (DICE) [13] working group is leading the
activities on supporting the use of DTLS in constrained
environments with the following tasks:

- To define a DTLS profile that is both suitable for IoT
applications and can be reasonably implemented on many
constrained devices.

- To define how DTLS record layer can be used to transmit
multicast messages securely.

- To investigate practical issues around the DTLS handshake
procedure in constrained environments. Many current systems
end up fragmenting messages, and the re-transmission and re-
ordering of handshake messages results in significant
complexity and reliability problems. Additional reliability
mechanisms for transporting DTLS handshake messages are
required as they will ensure that handling of re-ordered
messages needs to be done only once within the stack.

However, DICE does not intend to modify the DTLS state
machine. Moreover, key management and multicast session
setup are out the scope for the initial work.

There are several ongoing IoT/M2M standardization
activities such as OneM2M, ETSI M2M, GISFI, AllSeen
Alliance, OIC, ITU GSI, Thread and so on, which are beyond
the scope of this paper.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

The requirements for providing end-to-end security in
constrained IoT environments such as those based on CoAP and
DTLS are quite stringent. Nevertheless, lightweight security
implementations still make it possible as illustrated in the
previous sections. Taking it a step further, we intend to make
available in the near future the detailed performance metrics for
our application that employs the lightweight security
mechanism described earlier.

To improve the overall performance further, the actual
implementation of these security techniques on the underlying
hardware plays a key role. In addition, availability of in-built
crypto functions such as AES in hardware makes a lot of
difference to the memory footprint and energy efficiency, both
of which are of great interest to IoT.

Furthermore, it is essential that these implementations are
carried out taking into consideration the necessity of making
room in the near future for modifications arising out of the
ongoing standardization activities such as IETF DICE.
Additionally, interoperability capabilities can be looked into
through participation in events such as ETSI plug-tests.

Considering the overwhelming importance, relevance and
necessity of end-to-end security in IoT, it is considered essential
to make provision for session-based security functionalities at
different and multiple layers of the protocol stack so that it is
both robust and flexible to meet the application requirements.

REFERENCES

[1] D. Altolini, V. Lakkundi, N. Bui, C. Tapaarello, and M. Rossi, “Low
Power Link Layer Security for IoT: Implementation and Performance
Analysis,” in Proc. of IEEE IWCMC 2013, Cagliari, Italy, July 2013.

[2] E. Rescorla and N. Modadugu, Datagram Transport Layer Security
Version 1.2, IETF RFC 6347, January 2012.

[3] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application
Protocol (CoAP), IETF RFC 7252, June 2014.

[4] R. Bonetto, N. Bui, V. Lakkundi, A. Olivereau, A. Serbanati, and M.
Rossi, “Secure Communication for Smart IoT Objects: Protocol Stacks,
Use Cases and Practical Examples,” in Proc. of IEEE WoWMoM 2012,
San Francisco, CA, US, June 2012.

[5] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, IETF RFC 5246, August 2008.

[6] J. Fischl, H. Tschofenig, and E. Rescorla, Framework for Establishing a
Secure Real-time Transport Protocol (SRTP) Security Context Using
Datagram Transport Layer Security (DTLS), IETF RFC 5763, May 2010.

[7] S. Kumar, S. Keoh, and H. Tschofenig, A Hitchhiker's Guide to the
(Datagram) Transport Layer Security Protocol for Smart Objects and
Constrained Node Networks, IETF Draft (work in progress), March 2014.

[8] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Transmission of
IPv6 Packets over IEEE 802.15.4 Networks, RFC 4944, September 2007.

[9] O. Bergmann, TinyDTLS Software Library Implementation, available at
http://tinydtls.sourceforge.net/.

[10] O. Bergmann, S. Gerdes, and C. Bormann, “Simple Keys for Simple
Smart Objects,” in Proc. of Workshop on Smart Object Security, Paris,
France, March 2012.

[11] G. Peretti, CoAP over DTLS TinyOS Implementation and Performance
Analysis, MS Thesis, University of Padova, Italy, December 2013.

[12] A. Gifford, HMAC-SHA Implementations, available at
http://www.aarongifford.com.

[13] IETF DICE Working Group, http://datatracker.ietf.org/wg/dice/charter.

