
BlinkToSCoAP: An End-to-End Security
Framework for the Internet of Things

Giulio Peretti§, Vishwas Lakkundi†∗ and Michele Zorzi§
§Department of Information Engineering, University of Padova, Italy

†Altiux Innovations, Bangalore, India

Abstract—The emergence of Internet of Things and the avail-
ability of inexpensive sensor devices and platforms capable of
wireless communications enable a wide range of applications
such as intelligent home and building automation, mobile health-
care, smart logistics, distributed monitoring, smart grids, energy
management, asset tracking to name a few. These devices are
expected to employ Constrained Application Protocol for the
integration of such applications with the Internet, which includes
User Datagram Protocol binding with Datagram Transport
Layer Security protocol to provide end-to-end security. This
paper presents a framework called BlinkToSCoAP, obtained
through the integration of three software libraries implementing
lightweight versions of DTLS, CoAP and 6LoWPAN protocols
over TinyOS. Furthermore, a detailed experimental campaign
is presented that evaluates the performance of DTLS security
blocks. The experiments analyze BlinkToSCoAP messages ex-
changed between two Zolertia Z1 devices, allowing evaluations
in terms of memory footprint, energy consumption, latency and
packet overhead. The results obtained indicate that securing
CoAP with DTLS in Internet of Things is certainly feasible
without incurring much overhead.

Index Terms—Internet of Things; M2M; DTLS; CoAP; end-
to-end security; 6LoWPAN.

I. INTRODUCTION

The Internet of Things (IoT) encompasses heterogeneous
entities such as sensors, actuators and mobile devices operating
in a constrained environment consisting of low-power and lossy
networks. The IoT allows a wide range of application scenarios
and their integration with the Internet, wherein the IoT entities
interact with each other, with Internet remote services as well
as with human beings carrying an Internet-capable device such
as a smartphone or a tablet PC. To facilitate this integration,
the core building blocks used for IoT applications include the
web services, the IPv6 protocol and its lightweight version
obtained through 6LoWPAN.

The Constrained Application Protocol (CoAP) is a spe-
cialized web transfer protocol most suited for constrained
devices in Machine-to-Machine (M2M) applications. The CoAP
protocol provides a client/server interaction model between
application endpoints and includes the same key functionalities
of the HTTP protocol. Therefore, CoAP is easily interfaced
with HTTP, resulting in simplified web integration while also
ensuring M2M critical requirements such as low overhead,

∗The author was with Patavina Technologies Italy while carrying out this work.

978-1-4244-8953-4/11/$26.00 c© 2015 IEEE

multicast support, built-in discovery and simplicity. Like HTTP,
the CoAP client/server interaction model requires that CoAP
requests are sent by clients in order to request an action
on an available resource of the server. Upon receiving the
request, the server responds to the client with a CoAP response
containing an appropriate response code and an optional
resource representation [1]. As shown in Fig. 1, CoAP is
characterized by a 4-bytes header that contains the protocol
version number, the message type (CON, NON, ACK, RST), the
Token length, the code of the client request or server response
and the message ID used to match messages as well as to
detect message duplicates.

8 16 24
Ver T TKL Code Message ID

- - - Token (if any) of TKL bytes - - -
- - - Options (if any) - - -

1 1 1 1 1 1 1 1 - - - Payload (if any) - - -

0 32

Fig. 1: CoAP message format.

Datagram Transport Layer Security (DTLS) protocol – a
modified version of Transport Layer Security (TLS), the most
widespread end-to-end web security protocol [2] – resolves
the original protocol issues when running over unreliable
transport protocols such as UDP. In order to accomplish this
requirement, DTLS adds to the TLS headers the following
fields: Handshake Message Number (to reconstruct the correct
order of handshake messages), Record Sequence Number (to
reconstruct the correct order of Record messages) and Epoch
(to distinguish messages encrypted with different cypher suites).
DTLS is designed to be as similar to TLS as possible in order
to take advantage of pre-existing protocol infrastructure [3]. It
provides confidentiality, integrity protection and authenticity.

This paper presents an IoT framework that includes the
CoAP protocol protected by the DTLS protocol running over
the 6LoWPAN stack. It is realized by merging, adapting
and optimizing various implementations of these protocols
developed in-house at the SIGNET Group, Department of
Information Engineering, University of Padova. Furthermore,
we present an in-depth analysis of performance variation due to
the introduction of the security protocol in terms of additional
memory usage, computational time, energy overhead and the
packet overhead introduced by the DTLS header. Our results
infer that CoAP can be secured with DTLS, thus providing
end-to-end security in IoT networks consisting of even Class
1 constrained devices with ∼10KB of RAM and ∼100KB of
flash [4].

Vishwas.lakkundi
Pencil

Vishwas.lakkundi
Pencil

Vishwas.lakkundi
Typewriter
COMSNETS-2015

Vishwas.lakkundi
Typewriter
1

Vishwas.lakkundi
Typewriter
© 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

This paper is divided into five sections. State-of-the-art on
IoT security is included in Section II. Our BlinkToSCoAP
security framework is described in Section III, while Section
IV presents the results obtained and their performance analysis.
Concluding remarks are drawn in Section V.

II. RELATED WORK
Recently, a lot of research into end-to-end security protocols

for CoAP-based IoT is being carried out.
Authors of [5] introduce a DTLS security architecture that

performs two-way authentication, which includes both client
and server authentication, based on RSA. This particular
asymmetric encryption algorithm is too heavy for constrained
devices and the devices considered in their architecture have
to guarantee hardware support for secure application, and RSA
key storage, such as Trusted Platform Modules (TPMs).

In [6], the performance impact of several DTLS security
modes, proposed by the CoAP standard is analyzed in order to
identify the limitations of node platforms and the requirements
of IoT applications. The authors have evaluated energy, packet
and computational overheads as well as the memory footprint of
various security modes, showing that the small memory space
and absence of Elliptic Curve Cryptography (ECC) hardware
support are a critical aspect for the compatibility of IoT
networks with existing public-key certification infrastructures.
However, some DTLS security suites were identified as viable
if security and resources usage compromises are allowed by
the network application.

In [7], an extensive experimental evaluation is presented to
identify the most appropriate secure communications mecha-
nism between end-to-end network-layer and application-layer
security, compared in terms of energy, computational overheads
and memory footprints. The authors have described the impact
of end-to-end security on the communication rate of sensing
devices as well as on the lifetime of the constrained network.
The end-to-end approach provides the benefit of enabling
secure communications regardless of the application, while
the network-layer security may facilitate the integration with
certification infrastructures through the usage of ECC, but at
the cost of extra resources.

In [8], it has been shown that DTLS headers can be
compressed using 6LoWPAN mechanisms, significantly re-
ducing the number of additional security bits. This leads to
an increment of both the network lifetime and the achievable
throughput. The same authors, in a more recent work [9], have
presented a DTLS secured CoAP implementation that depends
entirely on DTLS header compression for enhanced energy
performance.

Securing CoAP with IPsec at the network layer is another
option that has been explored in [10]. However, IPsec is neither
supported by all the embedded IP stacks nor by all PC operating
systems and back-end web servers.

We therefore further explore the inherent advantage that
DTLS offers over IPsec, i.e. being an application layer protocol
it is implemented in the application space instead of in the OS
kernel. In addition, thanks to their similarities, DTLS allows
the reuse of existing TLS protocol infrastructure at the cost of
minimal application overhead [3].

III. BLINKTOSCOAP FRAMEWORK

The IoT security framework presented in this paper is called
BlinkToSCoAP and it is coded in NesC, a dialectal form of
the C programming language purposely created for the TinyOS
embedded operating system and best suited for the hardware
limits of sensor networks. TinyOS applications are component-
based, which means that each application is composed of
one or more software modules wired together by multiple
interfaces. BlinkToSCoAP transmits encrypted CoAP messages
over 6LoWPAN networks by means of the interconnection
of several TinyOS components that implement lightweight
versions of DTLS, CoAP and 6LoWPAN presented in detail
in [11].

CoAP

CoAPClient

BTSCTest

CoAPServer

SSLP DTLS
DTLS

SiGLoWPAN

SSLP

UDP

MemoryManager
Memory

Fig. 2: BlinkToSCoAP architecture.

The BlinkToSCoAP architecture, depicted in Fig. 2, is con-
ditioned by the pre-existent wiring structures of the underlying
protocol components. At the top of the BlinkToSCoAP stack
there is the BTSCTest component that acts as a CoAP Server
or Client and initializes the necessary components and circuitry
of the node. BTSCTest interprets the CoAP client or server
role by making use of the CoAP functionalities provided by the
two interfaces of the CoAP component, namely CoAPClient
and CoAPServer.

The BlinkToSCoAP client periodically sends a CoAP Blink
request to the BlinkToSCoAP server, which is waiting for
incoming CoAP requests. Every time the server correctly
receives a Blink message, an internal variable counter is
incremented and sent to the client through the servers CoAP
response. Upon every Blink receipt event, both server and client
devices turn on three LEDs of the nodes in a configuration
that represents the binary value of the shared counter.

Under the CoAP module, the SecureSiGLoWPAN (SSLP)
component is designed to handle the exchange of data between
CoAP, DTLS and 6LoWPAN protocols. Our optimized 6LoW-
PAN protocol is named as SiGLoWPAN. SSLP component
is essential because the DTLS component is designed to
interact with other components only through this interface
in order to both provide encryption functionalities as well as
access the transmission channel. Furthermore, SSLP intercepts
CoAP transmission requests and responses, encrypts them by
means of the DTLS component, and successively redirects the
encrypted data to the UDP interface of the IPv6/SiGLoWPAN
components in order to transmit it through the wireless channel.
Vice-versa, when a new UDP datagram is signaled by the
IPv6/SiGLoWPAN component, SSLP redirects its payload to
the DTLS module to deliver the decrypted data to the upper
CoAP component. Therefore, SSLP module is directly wired

Vishwas.lakkundi
Typewriter
COMSNETS-2015

Vishwas.lakkundi
Typewriter
2

with CoAP, SiGLoWPAN and DTLS components, acting like a
gateway for the data flowing between them. SSLP also makes
use of the MemoryManager component that belongs to the
IPv6/SiGLoWPAN library, in order to be able to correctly
interact with the SiGLoWPAN library itself.

In order to optimize the memory footprint of the proposed
framework, some of its configuration parameters have been
modified as follows: in the CoAP library, the maximum
contemporaneous CoAP active transactions has been reduced
from 5 to 2; in the SiGLoWPAN library, the maximum queue
dimension for IPv6 packets has been reduced from 5 to 3,
and the maximum number of IPv6 addresses a node can have
has been reduced to 1; the amount of RAM dedicated to the
dynamic management of the MemoryManager component has
been reduced from 2500 to 500 bytes. Furthermore, the DTLS
module has been optimized by eliminating redundant code and
by replacing the most RAM expensive variable types with a
more efficient variable type, wherever suitable.

The only cipher suite supported by our DTLS component
is DTLS PSK WITH AES 128 CBC SHA-256, composed
of Pre Shared Key (PSK) exchange algorithm involving the
128 bit Advanced Encryption Standard (AES) algorithm in
Counter CBC-MAC (CCM) mode and a keyed Hash Message
Authentication Code (HMAC) implementing 256-bit Secure
Hash Algorithm (SHA-256).

CoAP

CoAPClient

BTSCTest

CoAPServer

SiGLoWPAN

UDP

MemoryManager
Memory

Fig. 3: BlinkToCoAP Architecture.

In order to highlight the performance variation due to
the introduction of the DTLS module, the BlinkToSCoAP
application has been modified into an equivalent application
called BlinkToCoAP, which excludes DTLS. BlinkToCoAP
is designed to be as close as possible to BlinkToSCoAP
except that its CoAP module is interfaced directly to the
UDP protocol to access the channel. The architecture of the
unsecured application framework is depicted in Fig. 3.

IV. IMPLEMENTATION AND PERFORMANCE ANALYSIS

An experimental evaluation campaign is performed using the
proposed BlinkToSCoAP and BlinkToCoAP applications over
a 6LoWPAN network to evaluate the performance variation due
to the introduction of DTLS security modules. The network
setup consists of two Zolertia motes that communicate directly
in the 2.4 GHz ISM band by means of the IEEE 802.15.4
Medium Access Control (MAC) protocol with no Radio Duty
Cycling (RDC) enabled. The performance is evaluated in terms
of parameters such as memory footprint, packet overhead and
energy consumption, whose experiments are described in the
following sections together with their results.

A. Memory Footprint

The memory footprint of the BlinkToSCoAP and BlinkTo-
CoAP applications is provided by the GCC MSP430 Toolchain
that displays the total ROM and RAM bytes written during
the devices programming phase.

TABLE I: MEMORY FOOTPRINT.

Application RAM [bytes] ROM [bytes]

BlinkToSCoAP 6832 37360
BlinkToCoAP 4404 21062

The two applications differ only by the presence of the
DTLS protocol, meaning that the difference in their memory
footprint is equal to the memory space dimension of SSLP and
DTLS components. Memory footprints are shown in Table I.
SSLP and DTLS modules together require 16298 extra bytes
of ROM and 2428 extra bytes of RAM, which correspond to
about 44% and 36% of the total BlinkToSCoAP ROM and
RAM memory usage respectively. Fig. 4b and Fig. 4a show
graphical representations of these results along with Zolertia
Z1 memory still left available for use out of its total 92 KB
flash memory and 8 KB RAM.

BlinkToCoAP+
23%+

DTLS+SSLP+
18%+

Free+
59%+

(a) Code size (ROM) footprint.

BlinkToCoAP+
55%+DTLS+SSLP+

30%+

Free+
15%+

(b) Data size (RAM) footprint.

Fig. 4: Memory footprints.

B. Packet Overhead

To calculate the packet overheads our experiment involved
the use of a wireless packet sniffer board interfaced to a Linux
system running the Wireshark packet analyzer software. This
device is used to capture packets such as handshake messages,
CoAP secured transactions and CoAP unsecured transactions
exchanged over the wireless channel between the two nodes
under test running BlinkToSCoAP or BlinkToCoAP setup.
Wireshark is capable of parsing captured data in order to
distinguish the various protocols headers, providing access
to all their fields as well as their size and in particular, the
effective DTLS header dimension. Moreover, this experiment
also provides related time measurements. Packet transmissions
are in fact events that occur either before or after CPU-intensive
periods of time. Table II shows frame and UDP payload
dimensions for secured and unsecured CoAP transactions,
whereas Table III shows the length details of each of the
handshake messages. CoAP protocol adds a total overhead of
17 bytes per frame, while DTLS protocol adds 29 more bytes.
This overhead drastically reduces the maximum frame size
available (102 octets) at the MAC layer, without link-layer
security, as reported in [12].

Vishwas.lakkundi
Typewriter
COMSNETS-2015

Vishwas.lakkundi
Typewriter

Vishwas.lakkundi
Typewriter
3

TABLE II: COAP TRANSMISSION LENGTHS.

Frame UDP payload
[bytes] [bytes]

Unsecured Request 30 13
Unsecured Response 24 7

Secured Request 59 42
Secured Response 53 36

TABLE III: HANDSHAKE MESSAGE LENGTHS.

Frame UDP payload
[bytes] [bytes]

ClientHello 84 67
ClientHelloVerify 61 44

ClientHello (with cookie) 100 83
ServerHello + ServerHelloDone 105 88

ClientKeyExchange 59 42
ChangeCipherSpec 31 14

ClientFinished 70 53
ChangeCipherSpec 31 14

ServerFinished 70 53

C. Energy Consumption

Energy consumption of the employed hardware platform is
obtained through experimental measurements of voltage across
a current sensing resistor of 32.8 Ω placed in series with the
Zolertia Z1 board and the USB cable used as power supply, as
illustrated in Fig. 5. The voltage measurements are carried out
by means of the UTD2102CEL Digital Storage Oscilloscope.

R = 32.8 Ω
RZ1(t) +

-

VUSB=+5VI(t)

VR

Fig. 5: Power measurement setup.

The Z1 platform is assumed to be a time variable resistor
RZ1(t), while R = 32.8 Ω is the sensing resistor, I(t) and
VUSB = 5V are the current and voltage supplied by the USB
cable. Applying the Kirchhoff and Ohm laws, we have:

VUSB = (R+RZ1(t))I(t)

⇒ I(t) =
VUSB

R+RZ1(t)

The time variable platform equivalent resistance RZ1(t) can
be estimated from the voltage measurements of the sensing
resistor as follows:

RZ1(t) = R

(
VUSB

VR(t)
− 1

)
Furthermore, the power provided by the USB power source

PUSB and the power drained by the Zolertia platform PZ1 are
estimated as follows:

PUSB = VUSBI(t) =
VUSBVR(t)

R

PZ1 = VZ1I(t) =
VR(t)

R
(VUSB − VR(t))

By default, the adopted platform is intended to run at 3 Volts,
as reported in [13], therefore the 5 Volts provided by the USB
cable are reduced to the correct value by means of an Automatic
Voltage Regulator (AVR) integrated on the motes CP2102 chip
(USB-to-UART bridge), which introduces a performance loss
in terms of power consumption. However, since performance
evaluation is focused on the variation of energy consumption
due to DTLS operations and not on their absolute values,
the values get normalized across the board and this issue is
neglected. The experiment involves different communication
modes between two Zolertia platforms, namely CoAP secured,
and unsecured transmissions and DTLS handshake, which are
elaborated below.

1) CoAP Secured and Unsecured Transmissions: In this
experiment, the two nodes have already established a secure
channel by means of the DTLS Handshake Protocol. The
expected time behavior of the resistor voltage, shown by the
oscilloscope for the client device, is a series of incremental
step caused by the amount of power drained by the Zolertia
platform due to the request handling and transmission, followed
by a period of inactivity when the mote is awaiting the server
response and another step that signals the request receipt and
further processing. In a complementary manner, the server
nodes activity should display a unique step due to the request
reception, and its processing and the subsequent response
computation and transmission.

To highlight DTLS operations, the SSLP component is set to
turn on a LED every time the DTLS module is called to handle
a message, involving operations such as encryption, decryption,
message computation and message parsing. When the security
operations end, the LED is turned off. Furthermore, while one
probe of the oscilloscope senses the voltage of the sensing
resistor, a second one measures the activity of the toggling
diode. The oscilloscope behavior for a secured transmission
while employing a BlinkToSCoAP client is shown in Fig. 6a.
The yellow line indicates LED activity. Its behavior corresponds
to the CPU time used by the DTLS library for its security
operations. Moreover, request transmission and response receipt
are clearly visible on the blue line that indicates the voltage
across the sensing resistor. The resistor voltage also shows
radio operations, recognized as two consecutive peaks clearly
visible after the request operation and in a less clear form just
before the response operation. Between the CoAP request and
its transmission, it is also possible to recognize the fraction of
time when the mote is sensing the wireless channel in order to
avoid packet collisions. The behavior of the same experiment
applied to the BlinkToSCoAP server mote is shown in Fig. 6b.

(a) Client. (b) Server.

Fig. 6: Secured transmission and LED activity.

Vishwas.lakkundi
Typewriter
COMSNETS-2015

Vishwas.lakkundi
Typewriter
4

Furthermore, the experiment is repeated without LED activity
in order to acquire reliable measurements of the sensing resistor
voltage during CPU-intensive and inactivity phases. The same
experiment is also repeated for BlinkToCoAP application in
order to highlight the variation of performance due to security
operations. Results of these experiments are shown in Fig. 7.

(a) Client, unsecured. (b) Client, secured.

(c) Server, unsecured. (d) Server, unsecured.

Fig. 7: Secured and unsecured transmission measurements.

The mean values of the sensing resistor voltage during the
CPU-active, used to get the estimation of energy consumption,
and CPU-inactive phases are given below:

VR,CPU−active = 0.764[V]

VR,CPU−inactive = 0.645[V]

The BlinkToSCoAP and BlinkToCoAP CPU time require-
ments for computation of CoAP requests, CoAP responses,
handshake flights and radio transmissions are obtained from the
voltage measurements. The energy consumption of different
tasks performed by the Z1 motes can be calculated from
these values as described earlier. CPU ticks, average energy
consumption and processing time values are presented together
in Table IV for CoAP secured and unsecured transactions.

The experiment involving LED indicators for DTLS CPU
usage time provides precise time values of DTLS security
operations, inclusive of message parsing, creation, encryption
and decryption. These results are reported in Table IV together
with estimated energy consumption and CPU ticks.

The time required by security operations can be evaluated
considering the number of bytes that the transceiver could
transmit in the same amount of time. In particular, the
transceiver of the Z1 mote is able to send 55 bytes in 3.84
milliseconds (time required for creation and encryption of a
CoAP request) and 57 bytes in 4 milliseconds (time required
for parsing and decrypting a CoAP request). A relevant
performance indicator of the DTLS energy consumption is
EDTLS defined as the ratio of the total energy spent by both
the client and the server for a secured CoAP transaction to the
total energy spent for an unsecured CoAP transaction.

TABLE IV: PERFORMANCE PARAMETERS FOR COAP TRANSACTIONS AND OVERALL
DTLS OPERATIONS.

Processing Energy
time consumption Ticks
[ms] [µJ]

Unsec Client request 2.70 266 43.2 K
Unsec Client response 0.91 88 14.4 K

Unsec Client transaction 3.81 355 57.6 K
Unsec Server transaction 4.42 436 70.72 K
Unsec CoAP Transaction / 791 128.32 K

Sec Client request 7.08 698 113.28 K
Sec Client response 5.22 515 83.52 K
Sec Server request 5.82 574 93.12 K

Sec Server response 7.34 722 117.12 K
Sec Client transaction 12.30 1213 196.8 K
Sec Server transaction 13.16 1296 210.24 K
Sec CoAP Transaction / 2509 407.04 K

Msg creation & encryption 3.84 379 61.44 K
Msg parsing & decryption 4 395 64 K

Overall DTLS 7.84 774 125.44 K

This is calculated as:

EDTLS =
Etrans

sec

Etrans
unsec

∼= 3.17

Moreover, considering the energy consumed only by the
DTLS operations, the estimation of energy consumption related
to the SSLP component for a secured CoAP transaction can
be calculated as:

Etrans
sec (SSLP) = Etrans

sec − Etrans
unsec − 2Etrans

sec (DTLS)
∼= 172 [µJ]

A graphical comparison of the energy consumed (by both
client and server devices) is depicted in Fig. 8.

DTLS%
62%%

Other%
components%

31%%

SSLP%
7%%

Fig. 8: Energy consumed by different secured CoAP operations.

2) DTLS Handshake: The handshake phase of DTLS
protocol consumes considerable amount of energy and we
evaluate it in this section. Every time two nodes interact
for the first time, or after a long period of time, both of
them must spend a certain amount of time and energy to
establish or recover a DTLS session. Since the lightweight
DTLS implementation considered in this paper does not include
mechanisms for expired session recovery, experiments and
analysis are applied only to the handshake establishment phase.
Fig. 9 shows the voltage values of the sensing resistor for both
the client and server devices exchanging handshake messages,
while Table V shows the average time, energy consumption
and number of ticks required by client and server to handle a
full DTLS handshake as defined in [2].

Vishwas.lakkundi
Typewriter
COMSNETS-2015

Vishwas.lakkundi
Typewriter
5

(a) Client. (b) Server.

Fig. 9: Handshake measurements.

TABLE V: HANDSHAKE MEASUREMENTS.

Flights Processing Energy
Device involved time consumption Ticks

[ms] [µJ]

Client 1 7.8 769 124.8 K
Client 2, 3 14.2 1400 22.72 K
Client 4, 5 302.3 29822 4833.6 K
Client 6 3.2 316 51.2 K
Client 7 72.4 7142 1158.4 K

Client All 400 39450 6398.4 K

Server 1,2 31.7 3127 507.2 K
Server 3,4 259.9 25639 4158.4 K
Server 5 2.9 286 46.4 K
Server 6,7 142.8 14087 2284.8 K

Server All 437.3 43140 6996.8 K

The total time required for two nodes to perform a full
handshake is a channel-dependent parameter, but the time
durations required for frame transmissions are negligible
compared to the duration of their overall operations, which are
the main source of latency. The average delays caused by the
handshake phase during client and server mode of operations
are DC = 880 ms and DS = 800 ms respectively. The time
and energy required to establish a secure channel are a major
source of performance degradation. In fact, the operations of the
handshake phase drain an amount of energy that approximately
corresponds to the energy consumed by a device exchanging
33 CoAP secured transactions, while for the same amount of
time required to establish a secure channel the device could
transmit approximately 200 unsecured transactions. Further
details on the BlinkToSCoAP framework and its performance
analysis can be found in [14].

V. CONCLUDING REMARKS

This paper introduces the BlinkToSCoAP security framework
for the Internet of Things and provides an overview of the
underlying protocol implementations and TinyOS components
and also outlines the relationships that ensure their effective
collaboration. In addition, the extensive experiments carried out
during the course of this work and their results show that despite
the semi-optimized state of protocol implementations and the
large number of functionalities involved, all the necessary
code and data required to implement the proposed end-to-end
security framework using lightweight DTLS protocol within
CoAP and 6LoWPAN based IoT applications do not overshoot
the amount of ROM and RAM available in the Zolertia Z1
platform.

On the other hand, security operations of DTLS imple-
mentation consume considerable amounts of energy and
introduce considerable delay every time two nodes begin a new
communication or need to recover an expired session. Once
the security session has been established, security operations
increase the energy consumption of CoAP transmissions by
a factor of about 3.2 and affect the responsiveness of the
nodes, which have to work for additional 8 milliseconds per
CoAP transaction in order to deal with obfuscated data and
to transmit the additional DTLS header. These factors need to
be considered during the IoT system design while introducing
end-to-end security. The context considered here to assess the
quality of the proposed framework includes communications
between only two USB powered devices. A more realistic
situation would involve an operating environment with multiple
nodes running on battery supply. In conclusion, this work not
only provides a sound framework for implementing end-to-end
security in IoT but also provides an extensive performance
analysis in terms of memory footprint, packet overhead and
energy efficiency, which indicate that introducing lightweight
DTLS-based security in IoT is certainly feasible even in Class
1 constrained devices.

VI. ACKNOWLEDGMENT

The authors would like to thank Moreno Dissegna, Mario
Emilio Cecconato, Matteo Fiorindo and Giulio Marin for their
assistance during the course of this work.

REFERENCES

[1] Z. Shelby, K. Hartke, and C. Bormann, The Constrained Application
Protocol (CoAP), IETF RFC 7252, June 2014.

[2] T. Dierks and E. Rescorla, The Transport Layer Security (TLS) Protocol
Version 1.2, IETF RFC 5246, August 2008.

[3] E. Rescorla and N. Modadugu, Datagram Transport Layer Security Version
1.2, IETF RFC 6347, January 2012.

[4] C. Bormann, M. Ersue and A. Keranen. Terminology for Constrained-Node
Networks, IETF RFC 7228, May 2014.

[5] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle. A DTLS based
end-to-end security architecture for the Internet of Things with two-way
authentication, in Proc. of IEEE LCN 2012, Clearwater, USA.

[6] J. Granjal, E. Monteiro, and J. Sa Silva. On the feasibility of secure
application-layer communications on the Web of Things, in Proc. of IEEE
LCN 2012, Clearwater, USA.

[7] J. Granjal, E. Monteiro, and J. Silva. On the Effectiveness of End-to- End
Security for Internet-Integrated Sensing Applications, in Proc. of IEEE
GreenCom 2012, online conference.

[8] S. Raza, D. Trabalza, and T. Voigt. 6LoWPAN Compressed DTLS for
CoAP, in Proc. of IEEE DCOSS 2012, Hangzhou, China.

[9] S. Raza, H. Shafagh, K. Hewage, R. Hummen, and T. Voigt. Lithe:
Lightweight Secure CoAP for the Internet of Things, IEEE Sensors Journal,
vol. 13, issue 10, pp. 3711-3720, August 2013.

[10] C. Bormann, Using CoAP with IPsec, Tech. rep. CoRE Working Group,
2012.

[11] A. Castellani, G. Ministeri, M. Rotoloni, L. Vangelista, and M. Zorzi.
Interoperable and globally interconnected Smart Grid using IPv6 and
6LoWPAN, in Proc. of IEEE ICC 2012, Ottawa, Canada.

[12] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, Transmission of
IPv6 Packets over IEEE 802.15.4 Networks, RFC 4944, Sep. 2007.

[13] Zolertia Z1 WSN Module Datasheet 2010, available online at
http://zolertia.com/sites/default/files/Zolertia-Z1-Datasheet.pdf.

[14] G. Peretti, CoAP over DTLS TinyOS Implementation and Performance
Analysis, MS Thesis, University of Padova, Italy, December 2013.

Vishwas.lakkundi
Typewriter
COMSNETS-2015

Vishwas.lakkundi
Typewriter
6

